Global optimization on Stiefel manifolds — some particular problem instances ∗
نویسنده
چکیده
Optimization on Stiefel manifolds was discussed by Rapcsák in earlier papers. There, some numerical methods of global optimization are dealt with and tested on Stiefel manifolds. In the paper the structure of the optimizer points is given in some particular problem instances and for a special form of a quadratic problem defined on a Stiefel manifold. Some reduction tricks and results are obtained. We are focusing on a special case of the problem, namely when the coefficient matrices in the objective function are diagonal.
منابع مشابه
Some Global Optimization Problems on Stiefel Manifolds
Optimization on Stiefel manifolds was discussed by Rapcsák in earlier papers, and some global optimization methods were considered and tested on Stiefel manifolds. In the paper, test functions are given with known global optimum points and their optimal function values. A restriction, which leads to a discretization of the problem is suggested, which results in a problem equivalent to the well-...
متن کاملMotion Estimation in Computer Vision: Optimization on Stiefel Manifolds
Motion recovery from image correspondences is typically a problem of optimizing an objective function associated with the epipolar (or LonguetHiggins) constraint. This objective function is defined on the so called essential manifold. In this paper, the intrinsic Riemannian structure of the essential manifold is thoroughly studied. Based on existing optimization techniques on Riemannian manifol...
متن کاملSolving Interpolation Problems on Stiefel Manifolds Using Quasi-geodesics
The main objective of this paper is to propose a new method to generate smooth interpolating curves on Stiefel manifolds. This method is obtained from a modification of the geometric Casteljau algorithm on manifolds and is based on successive quasi-geodesic interpolation. The quasi-geodesics introduced here for Stiefel manifolds have constant speed, constant covariant acceleration and constant ...
متن کاملDirect Search Methods on Reductive Homogeneous Spaces
Direct search methods are mainly designed for use in problems with no equality constraints. However, there are many instances where the feasible set is of measure zero in the ambient space and no mesh point lies within it. There are methods for working with feasible sets that are (Riemannian) manifolds, but not all manifolds are created equal. In particular, reductive homogeneous spaces seem to...
متن کاملRiemannian Optimization Method on the Flag Manifold for Independent Subspace Analysis
Recent authors have investigated the use of manifolds and Lie group methods for independent component analysis (ICA), including the Stiefel and the Grassmann manifolds and the orthogonal group O(n). In this paper we introduce a new class of manifold, the generalized flag manifold, which is suitable for independent subspace analysis. The generalized flag manifold is a set of subspaces which are ...
متن کامل